Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Res Toxicol ; 36(8): 1332-1344, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37437120

RESUMO

Cytochrome P450 2B6 (CYP2B6) is responsible for the metabolism of ∼7% of marketed drugs. The in vitro drug interaction studies guidance for industry issued by the FDA stipulates that drug sponsors need to evaluate whether the investigated drugs interact with the major drug-metabolizing P450s including CYP2B6. Therefore, there has been greater attention to the development of predictive models for CYP2B6 inhibitors and substrates. In this study, conventional machine learning and deep learning models were developed to predict CYP2B6 inhibitors and substrates. Our results showed that the best CYP2B6 inhibitor model yielded the AUC values of 0.95 and 0.75 with the 10-fold cross-validation and the test set, respectively, and the best CYP2B6 substrate model produced the AUC values of 0.93 and 0.90 with the 10-fold cross-validation and the test set, respectively. The generalization ability of the CYP2B6 inhibitor and substrate models was assessed by using the external validation sets. Several significant substructural fragments relevant to CYP2B6 inhibitors and substrates were detected via frequency substructure analysis and information gain. In addition, the applicability domain of the models was defined by employing a nonparametric method based on the probability density distribution. We anticipate that our results would be useful for the prediction of potential CYP2B6 inhibitors and substrates in the early stage of drug discovery.


Assuntos
Inibidores do Citocromo P-450 CYP2B6 , Sistema Enzimático do Citocromo P-450 , Citocromo P-450 CYP2B6/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo
2.
Pharmacogenet Genomics ; 32(6): 219-225, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35852913

RESUMO

OBJECTIVES: The main objective of this study was to evaluate the effect of CYP2B6 and CYP3A4 polymorphisms on the virological and immunologic responses of HIV patients. A total of 153 HIV-positive patients were enlisted for the study. PATIENTS AND METHODS: Viral load and median CD4 T cell counts were evaluated at baseline and month 6 (M6). Samples were identified using TaqMan genotyping assays. RESULTS: The AG in CYP2B6 rs2279343 was associated with VLS compared to homozygous AA. In the dominant model, the AG/GG genotypes were associated with VLS compared to the AA genotype. Moreover, in overdominant model, the AG genotype was associated with VLS compared to AA/GG. Regarding immunological response, only the AG in SNP rs2279343 CYP2B6 was associated with an increase in CD4 cell count between baseline and M6. In CYP2B6 rs3745274, the CD4 cell count at M6 was higher than that of baseline for GG carriers and for GT carriers. In CYP3A4 rs2740574, the TC carriers showed a higher median CD4 count at M6 compared to that of the baseline count, as well as for CC carriers. The best genotypes combination associated with CD4 cell count improvement were AA/AG in SNP rs2279343 and GG/GT in SNP rs3745274. CONCLUSION: Our findings support the fact that CYP2B6 rs2279343 could help in the prediction of VLS and both SNPs rs3745274 and rs2279343 in CYP2B6 and CYP3A4 rs2740574 were associated with immune recovery in Malian HIV-positive patients.


Assuntos
Fármacos Anti-HIV , Benzoxazinas , Ciclopropanos , Infecções por HIV , Alcinos , Fármacos Anti-HIV/farmacologia , Benzoxazinas/farmacologia , Ciclopropanos/farmacologia , Citocromo P-450 CYP2B6/genética , Inibidores do Citocromo P-450 CYP2B6/farmacologia , Citocromo P-450 CYP3A/genética , Genótipo , Infecções por HIV/tratamento farmacológico , Infecções por HIV/enzimologia , Infecções por HIV/genética , Humanos , Polimorfismo de Nucleotídeo Único
3.
Chem Biol Interact ; 352: 109775, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34910929

RESUMO

Vicagrel, an antiplatelet drug candidate targeting platelet P2Y12 receptor and has finished its phase II clinical trial. The inhibition of six major cytochrome P450 enzymes (P450) (CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4) and six UDP-glucuronosyltransferases (UGT) (UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9, and UGT2B7) by vicagrel was evaluated using pooled human liver microsomes and specific probe substrates. Physiology-based pharmacokinetic (PBPK) simulation was further applied to predict the in vivo drug-drug interaction (DDI) potential between vicagrel and bupropion as well as S-mephenytoin. The results suggested that vicagrel inhibited CYP2B6 and CYP2C19 potently with apparent IC50 values of 1.6 and 2.0 µM, respectively. In terms of mode of reversible inhibition, vicagrel exhibited mixed-type inhibition of CYP2B6-catalyzed bupropion hydroxylation and noncompetitive inhibition of CYP2C19-mediated S-mephenytoin 4'-hydroxylation with Ki values of 0.19 µM and 1.2 µM, respectively. Vicagrel displayed profound time-dependent inhibition towards CYP2B6 with maximal rate constant of inactivation (kinact) and half-maximal inactivator concentration (KI) values of 0.062 min-1 and 1.52 µM, respectively. No time-dependent inhibition by vicagrel was noted for CYP2C19. For UGT, negligible to moderate inhibition by vicagrel was observed with IC50 values of >50.0, >50.0, 28.2, 8.7, >50.0 and 28.2 µM for UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9 and UGT2B7, respectively. In terms of mode of reversible inhibition, vicagrel exhibited mixed-type inhibition of UGT1A6-catalyzed N-Acetylserotonin ß-D-glucuronidation with a Ki value of 5.6 µM. No time-dependent inhibition by vicagrel was noted for UGT1A6. PBPK simulation indicated that neither altered AUC nor Cmax of bupropion and S-mephenytoin was observed in the presence of vicagrel. Our study provides inhibitory constants for future DDI prediction between vicagrel and drug substrates of CYP2B6, CYP2C19 and UGT1A6. In addition, our simulation suggests the lack of clinically important DDI between vicagrel and bupropion or S-mephenytoin.


Assuntos
Inibidores das Enzimas do Citocromo P-450/farmacologia , Glucuronosiltransferase/antagonistas & inibidores , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Fenilacetatos/farmacologia , Tiofenos/farmacologia , Bupropiona/administração & dosagem , Bupropiona/farmacocinética , Simulação por Computador , Citocromo P-450 CYP2B6/metabolismo , Inibidores do Citocromo P-450 CYP2B6/administração & dosagem , Inibidores do Citocromo P-450 CYP2B6/farmacologia , Citocromo P-450 CYP2C19/metabolismo , Inibidores do Citocromo P-450 CYP2C19/administração & dosagem , Inibidores do Citocromo P-450 CYP2C19/farmacologia , Inibidores das Enzimas do Citocromo P-450/administração & dosagem , Sistema Enzimático do Citocromo P-450/metabolismo , Interações Medicamentosas , Glucuronosiltransferase/metabolismo , Humanos , Técnicas In Vitro , Cinética , Mefenitoína/administração & dosagem , Mefenitoína/farmacocinética , Fenilacetatos/administração & dosagem , Inibidores da Agregação Plaquetária/administração & dosagem , Inibidores da Agregação Plaquetária/farmacologia , Tiofenos/administração & dosagem
4.
Curr Drug Metab ; 22(11): 882-892, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34191696

RESUMO

BACKGROUND: Herbal medicine Angelica dahurica is widely employed for the treatment of rheumatism and pain relief in China. Oxypeucedanin is a major component in the herb. OBJECTIVES: The objectives of this study are aimed at the investigation of mechanism-based inactivation of CYP2B6 and CYP2D6 by oxypeucedanin, characterization of the reactive metabolites associated with the enzyme inactivation, and identification of the P450s participating in the bioactivation of oxypeucedanin. METHODS: Oxypeucedanin was incubated with liver microsomes or recombinant CYPs2B6 and 2D6 under designed conditions, and the enzyme activities were measured by monitoring the generation of the corresponding products. The resulting reactive intermediates were trapped with GSH and analyzed by LC-MS/MS. RESULTS: Microsomal incubation with oxypeucedanin induced a time-, concentration-, and NADPH-dependent inhibition of CYPs2B6 and 2D6 with kinetic values of KI/kinact 1.82 µM/0.07 min-1 (CYP2B6) and 8.47 µM/0.044 min-1 (CYP2D6), respectively. Ticlopidine and quinidine attenuated the observed time-dependent enzyme inhibitions. An epoxide and/or γ-ketoenal intermediate(s) derived from oxypeucedanin was/were trapped in microsomal incubations. CYP3A4 was the primary enzyme involved in the bioactivation of oxypeucedanin. CONCLUSION: Oxypeucedanin was a mechanism-based inactivator of CYP2B6 and CYP2D6. An epoxide and/or γ- ketoenal intermediate(s) may be responsible for the inactivation of the two enzymes.


Assuntos
Inibidores do Citocromo P-450 CYP2B6/farmacologia , Inibidores do Citocromo P-450 CYP2D6/farmacologia , Furocumarinas/farmacologia , Catalase/metabolismo , Citocromo P-450 CYP2B6/efeitos dos fármacos , Citocromo P-450 CYP2B6/metabolismo , Citocromo P-450 CYP2D6/efeitos dos fármacos , Citocromo P-450 CYP2D6/metabolismo , Relação Dose-Resposta a Droga , Glutationa/metabolismo , Humanos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Quinidina/farmacologia , Superóxido Dismutase/metabolismo , Ticlopidina/farmacologia
5.
J Ethnopharmacol ; 270: 113766, 2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33395575

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Withania somnifera (L.) Dunal (Solanaceae) is a traditional herb, used in African indigenous systems of medicine for the treatment of various diseases (including HIV/AIDS and tuberculosis). The relevance of clinically significant interactions of Withania with ARVs and anti-TB drugs needs to be investigated. AIM OF THE STUDY: This study evaluated the effects of its roots on cytochromes P450 (CYPs) 2B6, 3A4, and rifampicin metabolism pathway, using methanol, ethanol, aqueous, and ethyl acetate solvent extractions. MATERIALS AND METHODS: The extracts were tested on human liver microsomes (HLM) for CYP inhibition, mRNA expression in HepG2 cells for CYP induction. Biochemical qualitative tests and LC-MS/MS methodology were used to determine active phytoconstituents. RESULTS: The methanolic and ethyl acetate extracts inhibited CYP2B6 with IC50s 79.16 and 57.96 µg/ml respectively, while none of the extracts had any effect on rifampicin metabolism or showed time-dependant inhibition (TDI). All extracts were moderate inducers of CYP3A4; the aqueous extract exhibited 38%-fold shift induction of CYP3A4 compared to the control. The methanolic extract had the lowest CTC50 (50% of cytotoxicity inhibition) (67.13 ± 0.83 µg/ml). LC-MS/MS-PDA full scans were consistent with the presence of flavone salvigenin (m/z 327), alkaloid isopelletierine (m/z 133), steroidal lactone 2,3-dihydrowithaferin-A (m/z 472), and other withanolides including withaperuvin I (m/z 533), withaferin derivative (m/z 567), some of these compounds likely being responsible for the observed CYP2B6 inhibition and CYP3A4 induction. The putative gastrointestinal tract (GIT) concentration for the active extracts was 1800 µg/ml and the hepatic circulation concentrations were estimated at about 220 µg/ml and 13.5 µg/ml for the methanolic and ethyl acetate extracts, respectively. The extrapolated in vivo percentage of inhibition was at 85% for the methanolic extract against CYP2B6. CONCLUSIONS: The findings reported in this study suggest that W. somnifera extracts have the potential of causing clinically significant herb-drug interactions (HDI) as moderate inducer of CYP3A4 and inhibitor of CYP2B6 metabolism pathway (methanol and ethyl acetate extracts).


Assuntos
Citocromo P-450 CYP2B6/metabolismo , Citocromo P-450 CYP3A/metabolismo , Esterases/metabolismo , Microssomos Hepáticos/enzimologia , Extratos Vegetais/farmacologia , Withania/química , Citocromo P-450 CYP2B6/genética , Inibidores do Citocromo P-450 CYP2B6/farmacologia , Citocromo P-450 CYP3A/genética , Indutores do Citocromo P-450 CYP3A/farmacologia , Células Hep G2 , Interações Ervas-Drogas , Humanos , Concentração Inibidora 50 , Medicinas Tradicionais Africanas , Microssomos Hepáticos/efeitos dos fármacos , Raízes de Plantas/química , Plantas Medicinais/química , Rifampina/metabolismo
6.
Drug Metab Dispos ; 48(8): 655-661, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32482757

RESUMO

Pyrrolo[2,1-c][1,4]benzodiazepine dimer (PBD) has shown broad antitumor properties and potential as a therapeutic agent for cancers. During a routine drug-drug interaction assessment, it was found that PBD is a reversible inhibitor of CYP2C8 (IC50 = 1.1 µM) but not CYP1A2, 2B6, 2C9, 2C19, 2D6, or 3A4/5. Additionally, PBD is a classic time-dependent inhibition (TDI) of CYP3A4/5, with >30-fold shift in IC50 after a preincubation with NADPH. All other CYPs tested did not show evidence for TDI, but potent inhibition of CYP2B6 (IC50 = 1.5 µM) was observed after a preincubation with or without (w/wo) NADPH, which was an unexpected observation given the fact that no inhibition was observed in the direct inhibition assay. No other CYP isoforms were susceptible to this apparent non-NADPH-dependent inhibition, suggesting that PBD may selectively inactivate CYP2B6 without metabolic activation. The washing of the human liver microsome pellet after incubation with PBD did not fully recover CYP2B6 activity, indicating that PBD is covalently bound to CYP2B6, leading to inactivation of the enzyme. To further investigate the mechanism of NADPH-independent inhibition, the IC50 shift was determined for several PBD analogs, and it was found that the compounds without both reactive imines did not show NADPH-independent inhibition of CYP2B6, implying that NADPH-independent inactivation was likely caused by direct covalent binding of PBD to the enzyme in a highly structure-specific manner. These data clearly highlight the need to assess direct and time-dependent inhibition w/wo NADPH to adequately characterize the in vitro CYP inhibitory properties of drug candidates with reactive moieties. SIGNIFICANCE STATEMENT: We described a very unique in vitro CYP inhibition profile of pyrrolo[2,1-c][1,4]benzodiazepine dimer as a potent reversible CYP2C8 inhibitor, an NADPH-dependent CYP3A4/5 time-dependent inhibition (TDI) inhibitor, and an NADPH-independent CYP2B6 TDI inhibitor, and inhibition of CYPs occurs through three distinct mechanisms: reversible drug-enzyme binding, enzyme inactivation via bioactivation, and enzyme inactivation by covalent binding via chemical reactions. Our results suggest that, for compounds with reactive functional moieties, false positives can be reported when the conventional TDI assay is utilized.


Assuntos
Antineoplásicos/farmacocinética , Benzodiazepinas/farmacocinética , Inibidores do Citocromo P-450 CYP2B6/farmacocinética , Inibidores do Citocromo P-450 CYP3A/farmacocinética , NADP/metabolismo , Pirróis/farmacocinética , Citocromo P-450 CYP2B6/metabolismo , Citocromo P-450 CYP3A/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Interações Medicamentosas , Feminino , Humanos , Masculino , Microssomos Hepáticos , Proteínas Recombinantes/metabolismo , Fatores de Tempo
7.
Biopharm Drug Dispos ; 41(4-5): 221-225, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32364297

RESUMO

Deoxyshikonin, a natural shikonin derivative, is the major component of Lithospermum erythrorhizon and exhibits various pharmacological effects such as lymphangiogenetic, antibacterial, wound healing, and anticancer effects. To investigate the herb-drug interaction potential associated with deoxyshikonin, the inhibitory effects of deoxyshikonin on eight major cytochrome P450 (CYP) enzymes were examined using cocktail substrate-incubated human liver microsomes. Deoxyshikonin strongly inhibited CYP2B6-catalyzed bupropion hydroxylation, with a Ki value of 3.5 µM, and the inhibition was confirmed using purified human CYP2B6. The inhibition was reversible because the inhibitory effect of deoxyshikonin was not dependent on the preincubation time. The results indicated that deoxyshikonin-induced drug-drug interaction should be considered when any herb containing deoxyshikonin is used for conventional medications.


Assuntos
Inibidores do Citocromo P-450 CYP2B6/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Interações Ervas-Drogas , Naftoquinonas/farmacologia , Humanos , Microssomos Hepáticos/metabolismo
8.
Nicotine Tob Res ; 22(2): 232-237, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31187118

RESUMO

INTRODUCTION: Existing treatments can aid tobacco smoking cessation, but they have low efficacy. Because there is a network of neural systems involved in tobacco addiction, combination treatments may provide greater efficacy. Chronic nicotine and amitifadine have each been shown to significantly reduce nicotine self-administration in rats. This study was conducted to determine if the combination of chronic nicotine with amitifadine, a triple monoamine reuptake inhibitor with CYP2B inhibitory effects, would reduce nicotine self-administration to a greater extent than either alone or placebo. METHODS: This study tested the combination of nicotine plus amitifadine in young adult female Sprague-Dawley rats self-administering nicotine (0.03 mg/kg/infusion). This combination was compared with each treatment alone and the vehicle during continuing nicotine self-administration as well as during resumption of self-administration after a week of enforced abstinence, modeling a quit attempt. Finally, we studied the residual effects of these therapies after discontinuation of treatment. RESULTS: Treatment with either chronic nicotine or amitifadine alone significantly reduced nicotine self-administration relative to controls. The combination of the treatments significantly enhanced this effect. After treatment withdrawal, all of the groups showed increases in nicotine self-administration, but only the combined treatment group remained significantly below control rates of nicotine self-administration. CONCLUSIONS: This study showed the promise of amitifadine as a possible new treatment for smoking cessation and suggested that amitifadine is more effective when given with chronic nicotine. The improved efficacy of the amitifadine and nicotine combination may be potentiated by amitifadine's inhibitory effects on CYP2B, which slows nicotine metabolism. IMPLICATIONS: This study replicated the effects that chronic nicotine or chronic amitifadine, a triple reuptake inhibitor, significantly reduces nicotine self-administration in rats. It extends those findings by showing that the combination of chronic nicotine plus amitifadine causes significantly greater reduction in nicotine self-administration than either drug treatment alone. The combination of chronic amitifadine and chronic nicotine also causes a persistent significant reduction in nicotine self-administration after the end of treatment. The amitifadine and nicotine treatment should be assessed in humans to determine whether this combination provides greater efficacy in smoking cessation than transdermal nicotine treatment alone.


Assuntos
Compostos Aza/administração & dosagem , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Inibidores do Citocromo P-450 CYP2B6/administração & dosagem , Citocromo P-450 CYP2B6 , Nicotina/administração & dosagem , Proteínas Vesiculares de Transporte de Monoamina/antagonistas & inibidores , Animais , Citocromo P-450 CYP2B6/metabolismo , Quimioterapia Combinada/métodos , Feminino , Ratos , Ratos Sprague-Dawley , Autoadministração , Abandono do Hábito de Fumar/métodos , Proteínas Vesiculares de Transporte de Monoamina/metabolismo
9.
Drug Test Anal ; 10(11-12): 1657-1669, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30341930

RESUMO

Zebrafish (Danio rerio) water tank (ZWT) approach was investigated as an alternative model for metabolism studies based on six different experiments with four model compounds. Sibutramine was applied for the multivariate optimization of ZWT conditions, also for the comparison of the metabolism among ZWT, humans and mice, beyond for the role of CYP2B6 in ZWT. After the optimization, 18 fish and 168 hours of experiments is the minimum requirement for a relevant panel of biotransformation products. A comparison among the species resulted in the observation of the same hydroxylated metabolites, with differences in metabolites concentration ratio. However, the ZWT allowed tuning of the conditions to obtain a specific metabolic profile, depending on the need. In addition, by utilizing CYP2B6 inhibition, a relevant ZWT pathway for the demethylation of drugs was determined. The stereospecificity of the ZWT metabolism was investigated using selegiline and no racemization or inversion transformations were observed. Moreover, the investigation of metabolism of cannabimimetics was performed using JWH-073 and the metabolites observed are the same described for humans, except for the hydroxylation at the indol group, which was explained by the absence of CYP2C9 orthologs in zebrafish. Finally, hexarelin was used as a model to evaluate studies by ZWT for drugs with low stability. As a result, hexarelin displays a very fast metabolization in ZWT conditions and all the metabolites described for human were observed in ZWT. Therefore, the appropriate conditions, merits, and relevant limitations to conduct ZWT experiments for the investigation of drug metabolism are described.


Assuntos
Preparações Farmacêuticas/metabolismo , Peixe-Zebra/metabolismo , Adulto , Animais , Antidepressivos/metabolismo , Antidepressivos/urina , Biotransformação , Ciclobutanos/metabolismo , Ciclobutanos/urina , Citocromo P-450 CYP2B6/metabolismo , Inibidores do Citocromo P-450 CYP2B6/farmacologia , Feminino , Humanos , Hidroxilação , Indóis/metabolismo , Indóis/urina , Masculino , Camundongos , Modelos Animais , Naftalenos/metabolismo , Naftalenos/urina , Oligopeptídeos/metabolismo , Oligopeptídeos/urina , Preparações Farmacêuticas/urina , Selegilina/metabolismo , Selegilina/urina , Peixe-Zebra/urina , Proteínas de Peixe-Zebra/metabolismo
10.
Chem Biol Interact ; 289: 90-97, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29723517

RESUMO

Human cytochrome P450 2B6 is an important hepatic enzyme for the metabolism of xenobiotics and clinical drugs. Recently, more attention has been paid to P450 2B6 because of the increasing number of drugs it metabolizes. It has been known to interact with terpenes, the major constituents of the essential oils used for various medicinal purposes. In this study, the effect of monoterpenes on P450 2B6 catalytic activity was investigated. Recombinant P450 2B6 was expressed in Escherichia coli and purified using Ni-affinity chromatography. The purified P450 2B6 enzyme displayed bupropion hydroxylation activity in gas-mass spectrometry (GC-MS) analysis with a kcat of 0.5 min-1 and a Km of 47 µM. Many terpenes displayed the type I binding spectra to purified P450 2B6 enzyme and α-terpinyl acetate showed strong binding affinity with a Kd value of 5.4 µM. In GC-MS analysis, P450 2B6 converted α-terpinyl acetate to a putative oxidative product. The bupropion hydroxylation activity of P450 2B6 was inhibited by α-terpinyl acetate and its IC50 value was 10.4 µM α-Terpinyl acetate was determined to be a competitive inhibitor of P450 2B6 with a Ki value of 7.6 µM. The molecular docking model of the binding site of the P450 2B6 complex with α-terpinyl acetate was constructed. It showed the tight binding of α-terpinyl acetate in the active site of P450 2B6, which suggests that it could be a competitive substrate for P450 2B6.


Assuntos
Inibidores do Citocromo P-450 CYP2B6/farmacologia , Citocromo P-450 CYP2B6/metabolismo , Terpenos/farmacologia , Biocatálise , Bupropiona/química , Bupropiona/farmacologia , Citocromo P-450 CYP2B6/isolamento & purificação , Inibidores do Citocromo P-450 CYP2B6/química , Cromatografia Gasosa-Espectrometria de Massas , Hidroxilação , Cinética , Simulação de Acoplamento Molecular , Oxirredução , Análise Espectral , Terpenos/química
11.
Biochemistry ; 57(5): 817-826, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29215266

RESUMO

Human hepatic cytochromes P450 (CYP) are integral to xenobiotic metabolism. CYP2B6 is a major catalyst of biotransformation of environmental toxicants, including polybrominated diphenyl ethers (PBDEs). CYP2B substrates tend to contain halogen atoms, but the biochemical basis for this selectivity and for species specific determinants of metabolism has not been identified. Spectral binding titrations and inhibition studies were performed to investigate interactions of rat CYP2B1, rabbit CYP2B4, and CYP2B6 with a series of phenoxyaniline (POA) congeners that are analogues of PBDEs. For most congeners, there was a <3-fold difference between the spectral binding constants (KS) and IC50 values. In contrast, large discrepancies between these values were observed for POA and 3-chloro-4-phenoxyaniline. CYP2B1 was the enzyme most sensitive to POA congeners, so the Val-363 residue from that enzyme was introduced into CYP2B4 or CYP2B6. This substitution partially altered the protein-ligand interaction profiles to make them more similar to that of CYP2B1. Addition of cytochrome P450 oxidoreductase (POR) to titrations of CYP2B6 with POA or 2'4'5'TCPOA decreased the affinity of both ligands for the enzyme. Addition of cytochrome b5 to a recombinant enzyme system containing POR and CYP2B6 increased the POA IC50 value and decreased the 2'4'5'TCPOA IC50 value. Overall, the inconsistency between KS and IC50 values for POA versus 2'4'5'TCPOA is largely due to the effects of redox partner binding. These results provide insight into the biochemical basis of binding of diphenyl ethers to human CYP2B6 and changes in CYP2B6-mediated metabolism that are dependent on POA congener and redox partner identity.


Assuntos
Hidrocarboneto de Aril Hidroxilases/antagonistas & inibidores , Citocromo P-450 CYP2B1/antagonistas & inibidores , Citocromo P-450 CYP2B6/efeitos dos fármacos , Inibidores das Enzimas do Citocromo P-450/farmacologia , Éteres Difenil Halogenados/farmacologia , Alquilação/efeitos dos fármacos , Substituição de Aminoácidos , Compostos de Anilina , Animais , Hidrocarboneto de Aril Hidroxilases/química , Hidrocarboneto de Aril Hidroxilases/genética , Hidrocarboneto de Aril Hidroxilases/metabolismo , Derivados de Benzeno/farmacologia , Citocromo P-450 CYP2B1/química , Citocromo P-450 CYP2B1/genética , Citocromo P-450 CYP2B1/metabolismo , Citocromo P-450 CYP2B6/química , Citocromo P-450 CYP2B6/genética , Citocromo P-450 CYP2B6/metabolismo , Inibidores do Citocromo P-450 CYP2B6/metabolismo , Inibidores do Citocromo P-450 CYP2B6/farmacologia , Inibidores das Enzimas do Citocromo P-450/metabolismo , Família 2 do Citocromo P450/antagonistas & inibidores , Família 2 do Citocromo P450/química , Família 2 do Citocromo P450/genética , Família 2 do Citocromo P450/metabolismo , Citocromos b5/metabolismo , Poluentes Ambientais/metabolismo , Éteres Difenil Halogenados/metabolismo , Humanos , Hidrocarbonetos Halogenados/metabolismo , Concentração Inibidora 50 , Estrutura Molecular , Mutagênese Sítio-Dirigida , NADPH Oxidases/metabolismo , Oxirredução , Coelhos , Ratos , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
12.
Tuberculosis (Edinb) ; 107: 149-155, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29050764

RESUMO

The frontline tuberculosis (Tb) antibiotic isoniazid has been repurposed using a three component complex aimed at increasing the delivery efficiency and adding new avenues to its mechanism of action. This study focuses on pharmacokinetic studies of the isoniazid-sucrose-copper (II)-PEG-3350 complex. The assays include the Plasma Protein Binding Assay (85.8%), Caco-2 Permeability Assay (B→APapp, 0.13 × 10-6 cm/s), Cytochrome P450 Inhibition Assay (i.e. CYP2B6, IC50 = 7.26 µM), In vitro microsomal Stability Assay (t1/2 NADPH-Dependent > 240 min), and HepG2 Cytotoxicity (no toxicity). The National Cancer Institute's 60 cell line panel is used to measure activity against cancer cells. The percent growth values averaged over all 60 cell lines indicates the complex has no anti-cancer activity, which also suggests a lack of general toxicity. It also provides data for the complexes specificity against Mycobacterium tuberculosis.


Assuntos
Antituberculosos/farmacocinética , Complexos de Coordenação/farmacocinética , Cobre/química , Inibidores do Citocromo P-450 CYP2B6/farmacocinética , Mucosa Intestinal/metabolismo , Isoniazida/farmacocinética , Mycobacterium tuberculosis/efeitos dos fármacos , Antituberculosos/química , Antituberculosos/toxicidade , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/toxicidade , Inibidores do Citocromo P-450 CYP2B6/química , Inibidores do Citocromo P-450 CYP2B6/toxicidade , Composição de Medicamentos , Meia-Vida , Células Hep G2 , Humanos , Absorção Intestinal , Isoniazida/análogos & derivados , Isoniazida/química , Isoniazida/toxicidade , Permeabilidade
13.
Planta Med ; 83(11): 895-900, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28288493

RESUMO

This study assessed the inhibitory effects of Garcinia cambogia extract on the cytochrome P450 enzymes in vitro. G. cambogia extract was incubated with cytochrome P450 isozyme-specific substrates in human liver microsomes and recombinant CYP2B6 isozyme, and the formation of the marker metabolites was measured to investigate the inhibitory potential on cytochrome P450 enzyme activities. The results showed that G. cambogia extract has significant inhibitory effects on CYP2B6 activity in a concentration-dependent manner. Furthermore, the inhibition was potentiated following preincubation with NADPH, indicating that G. cambogia extract is a time-dependent inhibitor of CYP2B6. Meanwhile, hydroxycitric acid, the major bioactive ingredient of G. cambogia extract, did not exhibit significant inhibition effects on cytochrome P450 enzyme activities. G. cambogia extract could modulate the pharmacokinetics of CYP2B6 substrate drugs and lead to interactions with those drugs. Therefore, caution may be required with respect to concomitant intake of dietary supplements containing G. cambogia extract with CYP2B6 substrates.


Assuntos
Inibidores do Citocromo P-450 CYP2B6/isolamento & purificação , Garcinia cambogia/química , Microssomos Hepáticos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Citocromo P-450 CYP2B6/metabolismo , Inibidores do Citocromo P-450 CYP2B6/farmacologia , Humanos , Técnicas In Vitro , Microssomos Hepáticos/enzimologia , Plantas Medicinais/química
14.
Antimicrob Agents Chemother ; 60(11): 6813-6822, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27600044

RESUMO

Cytochrome P450 2B6 (CYP2B6) metabolizes clinically important drugs and other compounds. Its expression and activity vary widely among individuals, but quantitative estimation is hampered by the lack of safe and selective in vivo probes of CYP2B6 activity. Efavirenz, a nonnucleoside HIV-1 reverse transcriptase inhibitor, is mainly cleared by CYP2B6, an enzyme strongly inhibited in vitro by voriconazole. To test efavirenz metabolism as an in vivo probe of CYP2B6 activity, we quantified the inhibition of CYP2B6 activity by voriconazole in 61 healthy volunteers administered a single 100-mg oral dose of efavirenz with and without voriconazole administration. The kinetics of efavirenz metabolites demonstrated formation rate-limited elimination. Compared to control, voriconazole prolonged the elimination half-life (t1/2) and increased both the maximum concentration of drug in serum (Cmax) and the area under the concentration-time curve from 0 h to t (AUC0-t) of efavirenz (mean change of 51%, 36%, and 89%, respectively) (P < 0.0001) with marked intersubject variability (e.g., the percent change in efavirenz AUC0-t ranged from 0.4% to ∼224%). Voriconazole decreased efavirenz 8-hydroxylation by greater than 60% (P < 0.0001), whereas its effect on 7-hydroxylation was marginal. The plasma concentration ratio of efavirenz to 8-hydroxyefavirenz, determined 1 to 6 h after dosing, was significantly increased by voriconazole and correlated with the efavirenz AUC0-t (Pearson r = >0.8; P < 0.0001). This study demonstrates the mechanisms of voriconazole-efavirenz interaction, establishes the use of a low dose of efavirenz as a safe and selective in vivo probe for phenotyping CYP2B6 activity, and identifies several easy-to-use indices that should enhance understanding of the mechanisms of CYP2B6 interindividual variability. (This study is registered at ClinicalTrials.gov under identifier NCT01104376.).


Assuntos
Benzoxazinas/farmacocinética , Inibidores do Citocromo P-450 CYP2B6/farmacologia , Citocromo P-450 CYP2B6/sangue , Voriconazol/farmacologia , Administração Oral , Adolescente , Adulto , Alcinos , Ciclopropanos , Inibidores do Citocromo P-450 CYP2B6/administração & dosagem , Inibidores do Citocromo P-450 CYP2B6/farmacocinética , Feminino , Voluntários Saudáveis , Humanos , Inativação Metabólica , Masculino , Pessoa de Meia-Idade , Voriconazol/administração & dosagem , Voriconazol/farmacocinética , Adulto Jovem
15.
Chem Biol Interact ; 256: 257-65, 2016 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-27387538

RESUMO

A significant number of new chemical entities (NCEs) fail in drug discovery due to inhibition of Cytochrome P450 (CYP) enzymes. Therefore, to avert costly drug failure at the clinical phase it becomes indispensable to evaluate the CYP inhibition profile of NCEs early in drug discovery. In light of these concerns, we envisioned to investigate the inhibitory effects of S002-333 [2-(4-methoxy-benzenesulfonyl)-2,3,4,9-tetrahydro-1H-b-carboxylic acid amide], a novel and potent antithrombotic agent, on nine major CYP enzymes (CYP1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1 and 3A4) of human liver microsomes (HLM). S002-333 exists as racemic mixture of S004-1032 (R-isomer) and S007-1558 (S-isomer), consequently, we further examined the enantioselective differences of S002-333 in the inhibition of human CYP enzymes. Of the CYP enzymes tested, CYP2B6-catalyzed bupropion 6-hydroxylation was inhibited by S002-333 (IC50 âˆ¼ 9.25 ± 2.46 µM) in a stereoselective manner with (S)-isomer showing potent inhibition (IC50 âˆ¼ 5.28 ± 1.25 µM) in contrast to (R)-isomer which showed negligible inhibition on CYP2B6 activity (IC50 > 50 µM). S002-333 and its (S)-isomer inhibited CYP2B6 activity in a non-competitive fashion with estimated Ki values of 10.1 ± 3.4 µM and 5.09 ± 1.05 µM, respectively. No shift in the IC50 value was observed for S002-333 and its isomers when preincubated for 30 min in the presence of NADPH suggesting that neither S002-333 nor its enantiomers are time-dependent inhibitors. Thus, the present findings signified that S002-333 is a potent stereoselective inhibitor of CYP2B6, whereas, inhibition for other CYPs was substantially negligible. These in vitro findings would be useful in deciding the development of S002-333 as a single-enantiomer or as a racemic mixture.


Assuntos
Carbolinas/metabolismo , Inibidores do Citocromo P-450 CYP2B6/metabolismo , Citocromo P-450 CYP2B6/metabolismo , Fibrinolíticos/metabolismo , Sulfonamidas/metabolismo , Carbolinas/química , Inibidores do Citocromo P-450 CYP2B6/química , Inibidores das Enzimas do Citocromo P-450/química , Inibidores das Enzimas do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Fibrinolíticos/química , Humanos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Isoformas de Proteínas/metabolismo , Estereoisomerismo , Sulfonamidas/química
16.
Biochem Pharmacol ; 113: 88-96, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27311985

RESUMO

Cytochrome P450 2B6 (CYP2B6), mainly expressed in the liver and brain, is important for processing a number of widely used drugs. Variations in CYP2B6 expression are associated with decreased drug efficacy or adverse effects in some patients. Although CYP2B6 genetic variants are associated with its differential expression, epigenetic mechanisms affecting CYP2B6 gene regulation have not been established. Sequence analysis identified 29 domains in the CYP2B6 mRNA transcript that could be subject to regulation by microRNAs. Inverse correlations were found in human hepatocytes for the levels of the microRNAs hsa-miR-504-5p and hsa-miR-25-3p compared with CYP2B6 mRNA. Reporter gene assays showed that hsa-miR-25-3p suppresses CYP2B6 expression by targeting a specific sequence in the 3'-untranslated region of the mRNA transcript. Electrophoretic mobility shift assays confirmed that hsa-miR-25-3p forms stable complexes with its cognate mRNA sequence and that it recruits cellular factors, including Ago-4. Transfection of HepaRG cells with hsa-miR-25-3p mimics inhibited expression of the endogenous CYP2B6 gene and it also decreased rifampicin-dependent induction of CYP2B6 at the mRNA and protein levels. In summary, in silico and in vitro analyses show that hsa-miR-25-3p suppresses CYP2B6 expression in human liver cells via an epigenetic mechanism.


Assuntos
Citocromo P-450 CYP2B6/genética , Citocromo P-450 CYP2B6/metabolismo , Epigênese Genética , Regulação Enzimológica da Expressão Gênica , Hepatócitos/metabolismo , MicroRNAs/genética , Sítios de Ligação , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Inibidores do Citocromo P-450 CYP2B6/farmacologia , Ensaio de Desvio de Mobilidade Eletroforética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Humanos , Fígado/metabolismo , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Rifampina/farmacologia
17.
Molecules ; 21(2)2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26891286

RESUMO

Highly active antiretroviral therapy (HAART) has greatly improved health parameters of HIV infected individuals. However, there are several challenges associated with the chronic nature of HAART administration. For populations in health transition, dual use of medicinal plant extracts and conventional medicine poses a significant challenge. There is need to evaluate interactions between commonly used medicinal plant extracts and antiretroviral drugs used against HIV/AIDS. Efavirenz (EFV) and nevirapine (NVP) are the major components of HAART both metabolized by CYP2B6, an enzyme that can potentially be inhibited or induced by compounds found in medicinal plant extracts. The purpose of this study was to evaluate the effects of extracts of selected commonly used medicinal plants on CYP2B6 enzyme activity. Recombinant human CYP2B6 was used to evaluate inhibition, allowing the assessment of herb-drug interactions (HDI) of medicinal plants Hyptis suaveolens, Myrothamnus flabellifolius, Launaea taraxacifolia, Boerhavia diffusa and Newbouldia laevis. The potential of these medicinal extracts to cause HDI was ranked accordingly for reversible inhibition and also classified as potential time-dependent inhibitor (TDI) candidates. The most potent inhibitor for CYP2B6 was Hyptis suaveolens extract (IC50 = 19.09 ± 1.16 µg/mL), followed by Myrothamnus flabellifolius extract (IC50 = 23.66 ± 4.86 µg/mL), Launaea taraxacifolia extract (IC50 = 33.87 ± 1.54 µg/mL), and Boerhavia diffusa extract (IC50 = 34.93 ± 1.06 µg/mL). Newbouldia laevis extract, however, exhibited weak inhibitory effects (IC50 = 100 ± 8.71 µg/mL) on CYP2B6. Launaea taraxacifolia exhibited a TDI (3.17) effect on CYP2B6 and showed a high concentration of known CYP450 inhibitory phenolic compounds, chlorogenic acid and caffeic acid. The implication for these observations is that drugs that are metabolized by CYP2B6 when co-administered with these herbal medicines and when adequate amounts of the extracts reach the liver, there is a high likelihood of standard doses affecting drug plasma concentrations which could lead to toxicity.


Assuntos
Extratos Vegetais/química , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Alcinos , Terapia Antirretroviral de Alta Atividade , Benzoxazinas/farmacologia , Ciclopropanos , Citocromo P-450 CYP2B6/genética , Citocromo P-450 CYP2B6/metabolismo , Inibidores do Citocromo P-450 CYP2B6/química , Inibidores do Citocromo P-450 CYP2B6/farmacologia , Interações Ervas-Drogas , Humanos , Magnoliopsida/química , Nevirapina/farmacologia
18.
Drug Metab Lett ; 10(1): 56-64, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26648056

RESUMO

BACKGROUND: Tobacco smoking is a leading cause of preventable disease and death globally. Nicotine is the main addictive component in tobacco. Nicotine is eliminated from the body by biotransformation in the liver to inactive metabolites. This reaction is catalyzed by the cytochrome P450 2A6 (CYP2A6) enzyme. Administering chemical inhibitors of CYP2A6 has been shown to slow down the elimination of nicotine with consequent reduction in number of cigarettes smoked. We have systematically developed small molecule CYP2A6 inhibitors with good balance between potency and CYP selectivity. OBJECTIVE: During this process we have noticed that many potent CYP2A6 inhibitors also inhibit other human liver CYP forms, most notably CYP1A2 and CYP2B6. This study aimed at defining common and distinct features of ligand binding to CYP1A2, CYP2A6 and CYP2B6 active sites. METHODS: We used our previous chemical inhibitor databases to construct improved 3-dimensional quantitative structureactivity relationship (3D-QSAR) models for CYP1A2, CYP2A6 and CYP2B6. RESULTS: Combined 3D-QSAR and docking procedures yielded precise information about the common and distinct interactions of inhibitors and the enzyme active sites. Positioning of hydrogen bond donor/acceptor atoms and the shape and volume of the compound defined the potency and specificity of inhibition. A novel potent and selective CYP1A2 inhibitor was found. CONCLUSION: This in silico approach will provide a means for very rapid and high throughput prediction of cross-inhibition of these three CYP enzymes.


Assuntos
Inibidores do Citocromo P-450 CYP1A2/farmacologia , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2A6/metabolismo , Inibidores do Citocromo P-450 CYP2B6/farmacologia , Citocromo P-450 CYP2B6/metabolismo , Desenho de Fármacos , Domínio Catalítico , Desenho Assistido por Computador , Citocromo P-450 CYP1A2/química , Inibidores do Citocromo P-450 CYP1A2/química , Inibidores do Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2A6/química , Citocromo P-450 CYP2B6/química , Inibidores do Citocromo P-450 CYP2B6/química , Inibidores do Citocromo P-450 CYP2B6/metabolismo , Humanos , Ligação de Hidrogênio , Ligantes , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Conformação Proteica , Relação Quantitativa Estrutura-Atividade
19.
Chem Biol Interact ; 240: 346-52, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26335194

RESUMO

Furanocoumarin compound psoralen (PRN) is a major active ingredient found in herbaceous plants. PRN has been used for the treatment of various dermal diseases in China. We evaluated the inhibitory effect of PRN on cytochrome P450 2B6 (CYP2B6) and found that PRN induced a time-, concentration-, and NADPH-dependent inactivation of CYP2B6 with the values of KI and kinact being 110.2 µM and 0.200 min(-1), respectively. Ticlopidine, a CYP2B6 substrate, prevented the enzyme from the inactivation induced by PRN. Exogenous nucleophile glutathione (GSH) and catalase/superoxide dismutase showed limited protection of CYP2B6 from the inactivation. The estimated partition ratio of the inactivation was approximately 400. GSH trapping experiments indicates that an epoxide or/and γ-ketoenal intermediate was formed in microsomal incubations with PRN. In summary, PRN was characterized as a mechanism-based inactivator of CYP2B6.


Assuntos
Inibidores do Citocromo P-450 CYP2B6/farmacologia , Citocromo P-450 CYP2B6/metabolismo , Ficusina/farmacologia , Citocromo P-450 CYP2B6/química , Inibidores do Citocromo P-450 CYP2B6/química , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Ficusina/química , Ticlopidina/metabolismo , Ticlopidina/farmacologia
20.
Int J Clin Exp Pathol ; 8(5): 5584-90, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26191268

RESUMO

Vorinostat (suberoylanilide hydroxamic acid, SAHA) is the first approved histone deacetylase (HDAC) inhibitor for the treatment of cutaneous T-cell lymphoma after progressive disease following two systemic therapies. The rats were randomly divided into SAHA groups (low, medium and high dosage) and control group. The SAHA group rats were given 12.3, 24.5, and 49 mg/kg SAHA, respectively, by continuous intragastric administration for 7 days. The influence of SAHA on the activities of CYP450 isoforms CYP2B6, CYP1A2, CYP2C19, CYP2D6 and CYP2C9 were evaluated by cocktail method, they were responsed by the changes of pharmacokinetic parameters of bupropion, phenacetin, tolbutamide, metroprolol and omeprazole. The five probe drugs were given to rats through intragastric administration, and the plasma concentration were determined by UPLC-MS/MS. The result of SAHA group compared to control group, there were statistical pharmacokinetics difference for bupropion, phenacetin, tolbutamide and metroprolol. Continuous intragastric administration for 7 days may induce the activities of CYP2C19 of rats, inhibit CYP1A2 and slightly inhibit CYP2B6 and CYP2D6 of rats. This may give advising for reasonable drug use after co-used with SAHA. The results indicated that drug co-administrated with SAHA may need dose adjustment. Furthermore, continuous intragastric administration of SAHA for 7 days, liver cell damaged, causing liver cell edema, in liver metabolism process.


Assuntos
Inibidores do Citocromo P-450 CYP1A2/administração & dosagem , Indutores do Citocromo P-450 CYP2C19/administração & dosagem , Citocromo P-450 CYP2C19/biossíntese , Citocromos/antagonistas & inibidores , Inibidores de Histona Desacetilases/administração & dosagem , Ácidos Hidroxâmicos/administração & dosagem , Fígado/efeitos dos fármacos , Administração Oral , Animais , Bupropiona/sangue , Bupropiona/farmacocinética , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Cromatografia Líquida , Citocromo P-450 CYP1A2 , Inibidores do Citocromo P-450 CYP1A2/toxicidade , Citocromo P-450 CYP2B6/metabolismo , Inibidores do Citocromo P-450 CYP2B6/administração & dosagem , Indutores do Citocromo P-450 CYP2C19/toxicidade , Citocromo P-450 CYP2D6/metabolismo , Inibidores do Citocromo P-450 CYP2D6/administração & dosagem , Citocromos/metabolismo , Interações Medicamentosas , Edema/induzido quimicamente , Edema/patologia , Indução Enzimática , Inibidores de Histona Desacetilases/toxicidade , Ácidos Hidroxâmicos/toxicidade , Fígado/enzimologia , Fígado/patologia , Masculino , Metoprolol/sangue , Metoprolol/farmacocinética , Omeprazol/sangue , Omeprazol/farmacocinética , Fenacetina/sangue , Fenacetina/farmacocinética , Ratos Sprague-Dawley , Especificidade por Substrato , Espectrometria de Massas em Tandem , Tolbutamida/sangue , Tolbutamida/farmacocinética , Vorinostat
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...